Contamination Mitigation Strategy for Ultra-Low Energy Electron Microscopy and Spectroscopy
نویسندگان
چکیده
منابع مشابه
Contamination mitigation strategies for scanning transmission electron microscopy.
Modern scanning transmission electron microscopy (STEM) enables imaging and microanalysis at very high magnification. In the case of aberration-corrected STEM, atomic resolution is readily achieved. However, the electron fluxes used may be up to three orders of magnitude greater than those typically employed in conventional STEM. Since specimen contamination often increases with electron flux, ...
متن کاملScanning transmission low-energy electron microscopy
We discuss an extension to the transmission mode of the cathode-lens-equipped scanning electron microscope, enabling operation down to the lowest energies of electrons. Penetration of electrons through free-standing ultrathin films is examined along the full energy scale, and the contribution of the secondary electrons (SEs), released near the bottom surface of the sample, is shown, enhancing t...
متن کاملVery Low Energy Scanning Electron Microscopy
Very low energy scanning electron microscopy is introduced as a scanning version of the low energy electron microscopy, i.e. the emission electron microscopy with the sample excited by means of a parallel wave of electrons. The incident primary electrons are retarded in the cathode lens consisting of a negatively biased sample (cathode) and earthed anode. Interaction of slow electrons with soli...
متن کاملHigh-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.
An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability...
متن کاملLow-energy electron microscopy and spectroscopy with ESCHER: Status and prospects
We describe the layout and the capabilities of a new aberration-corrected low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) facility, which features realand reciprocal-space spectroscopy. This new setup, named Electronic, Structural, and Chemical Nanoimaging in Real Time (ESCHER), was recently installed at Leiden University. It has three major instrumentation-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2019
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927619003234